Heavy Neutral Lepton on Future Muon Collider

Kunfeng Lyu University of Minnesota

In Collaboration with Peiran Li and Zhen Liu

Muon Collider Physics and Detector Workshop, Fermilab, Dec 15, 2022

Outline

- Neutrino Mass
- Heavy Neutral Leptons
- Search at Future Muon Collider
 - Muon flavor
- Various Experimental Constraints

Origin of Neutrino Mass

- In SM, neutrino is massless. While the experiments have confirmed its tiny mass smaller than O(0.1) eV.
- Effective Operator: Weinberg Operator $\frac{LLHH}{\Lambda}$
- Seesaw mechanism
 - Simple Type I
 - Inverse seesaw model
 - Linear seesaw model
- We choose to work in a simple scenario. Suppose there is heavy neutral lepton. We can parametrize its mass m_N mixing angle with SM neutrino. $U_l = \sin \theta_l$

$$\mathcal{L}_{W} = \frac{gU_{l}}{\sqrt{2}} \left(W_{\mu} \bar{l}_{L} \gamma^{\mu} N + h.c. \right)$$

$$\mathcal{L}_{Z} = -\frac{gU_{l}}{2 \cos \theta_{w}} Z_{\mu} \left(\bar{\nu}_{L} \gamma^{\mu} N + \bar{N} \gamma^{\mu} \bar{\nu}_{L} \right)$$

$$\mathcal{L}_{H} = -\frac{U_{l} m_{N}}{2} h \left(\bar{\nu}_{L} N + \bar{N} \nu_{L} \right)$$

 $\mathcal{L} = \mathcal{L}_W + \mathcal{L}_Z + \mathcal{L}_H$

Our current focus

$$m_N > O(100) \text{GeV}$$

The muon collider can open and probe new region space in the parameter space. even compared to other future colliders!

Snowmass Energy Frontier Report: 2211.11084

Search at Muon Collider

- The future muon collider includes 3 TeV and 10 TeV scenarios.
- Clean background, fixed cms energy, excellent environment for the muon flavor HNL
- Here we show the muon-flavor Dirac HNL as benchmark.

- Tools:
 - Using MadGraph 3.4 to simulate and then make analysis
- Effective Vector-Boson Approximation (EVA) or gauge boson PDF has been implemented

Muon Flavor

 ${}^{\bullet}$ Signal: Production of N_{μ} Dominated by the t-channel

$$\mu^{+} + \mu^{-} \to N_{\mu} + \bar{\nu}_{\mu}$$

Type	Signal process	$\sigma/U_{\mu}^2(m_N = 1000 \text{GeV})$
t-channel	$\mu^+\mu^- \longrightarrow N_\mu \bar{\nu}_\mu$	48.26 pb
VBF	$\mu^{+}\mu^{-} \longrightarrow \mu^{+}\mu^{-}N_{\mu}\bar{\nu}_{\mu}$	$\sim 1~\mathrm{pb}$
VBF	$\mu^+\mu^- \longrightarrow \bar{\nu}_{\mu}\nu_{\mu}N_{\mu}\bar{\nu}_{\mu}$	$\sim 0.1~\mathrm{pb}$

Table 1: Signal for μ flavor at 3 TeV

Decay of N_{μ}

HNL can promptly decay via neutral current or charged current or to the higgs. Here we select its decay channel to W boson.

$$N_{\mu} \to W^{+} + \mu^{-}, W^{+} \to jj$$

We assume the W boson can be well reconstructed from the two jets.

We focus on the final states W^+ and μ^- and reconstruct its invariant mass distribution.

10TeV Background

Dijets can be from either W or Z boson.

Type	Background process	σ/U_{μ}^2	Cut	Taking account
t-channel	$\mu^+\mu^- \longrightarrow W^+\mu^-\bar{\nu}_{\mu}$	0.107 pb	default cut	Yes
t-channel	$\mu^+\mu^- \longrightarrow Z\mu^+\mu^-$	$0.232~\mathrm{pb}$	default cuts & missing μ^+	Yes
VBF	$\mu^+\mu^- \longrightarrow \mu^+\mu^-W^+\mu^-\bar{\nu}_{\mu}$	$0.2~\mathrm{pb}$	default cut $(\mu^+\mu^-)$ are missing)	Yes
VBF	$\mu^+\mu^- \longrightarrow \bar{\nu}_{\mu}\nu_{\mu}W^+\mu^-\bar{\nu}_{\mu}$	0.0343 pb	$\operatorname{default}\operatorname{cut}$	No

TABLE IV. Background for μ flavor at 10 TeV

Using EVA in MadGraph, especially photon PDF VBF processes dominates at 10 TeV

Default cut: For muon: PT > 20GeV, Eta < 2.5

Using EVA will lead to t-channel singularity.

So we just generate 2 -> 5 processes directly in MadGraph.

(Real) t-channel singularity

Complex mass regulation hep-ph/9509314

The cross section is proportional to the beam size. hep-ph/9601290

We are trying to gain a better understanding. (In progress)

(Fake) t-channel singularity: Subtlety of EVA

In 2 to 5 full processes, the intermediate neutrino can never be on-shell.

But in EVA, if we treat the gauge boson are "real", the neutrino can be on-shell which induce t-channel singularity.

One plausible way is to make the light particles are from the decay of heavy gauge bosons.

Cutflow Analysis

- 1. We assume the W boson can be well constructed from the dijets (Z boson can fake).
- 2. Combine the $W^+(Z)$ and μ^- to try to reconstruct the HNL

Impose the mass window:

Require a cut around the heavy neutrino mass.

$$m_N < 500 {\rm GeV}: m_N \pm 0.1 m_N$$

$$m_N \ge 500 \text{GeV}: \qquad m_N \pm 50 \text{GeV}$$

After mass window selection

Optimization cuts I:
 Missing transverse
momentum needs to be
less than 500 GeV.

Optimization cuts II:

For the reconstructed W boson.

1000GeV<E(W)<4950GeV which is mass window dependent

Final Results

95% exclusion bounds

Various Bounds

Next step

Short Review of Various Probes

- People have tried to constrain in the U^2-mN plane via various channels and different machines.
- Cosmo and astrophysical probe: BBN, CMB, etc
- Indirect constraints: branching ratio of SM particles decays, etc
- Direct constraints
 - Production
 - Meson decay, heavy lepton decay
 - (On-shell/Off-shell) Gauge/higgs boson decay
 - Decay
 - Short-lived
 - Long-lived

Existing Bounds

Snowmass Energy Frontier Report: 2211.11084

From Past Experiments

NuTeV: Drell-Yan, NHL decay

CHARM:

Beam-dump: D meson decay, Wide-band: neutrino beam colliding with nucleus

DELPHI: Z boson decay

E949: Kaon decay

LHC: Off-shell W/Z decay

Upgraded Bounds

Future Upgraded Projection on LHC, NA62 and DUNE

Various Bounds

Some future proposed beam-dump experiments or far detector to probe the long-lived HNL

Various Bounds

Bounds from the proposed future collider: FCC, CEPC, ILC, LHeC

Conclusion

- Muon Collider is a good platform to probe the TeV scale HNL.
 We can open a new region in the parameter space.
- For the muon flavor case, we can probe the Umu^2 down to 10^(-6) for mN larger than O(100) GeV.
- There are t-channel singularity cases one should be careful to deal with.